multipole moment - vertaling naar russisch
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

multipole moment - vertaling naar russisch

MATHEMATICAL SERIES APPROXIMATING AN ANGLE-DEPENDENT FUNCTION
Multipole moment; Multipole; Multipole Expansion; Electric Multipole Expansion; Multipole moments; Octupole; Octopole

multipole moment         

общая лексика

мультипольный момент

multipole         

['mʌltipəul]

общая лексика

многополюсник

многополюсный

мультиполь

мультипольный

Смотрите также

multipole contactor; multipole moment; multipole radiation; multipole switch

существительное

физика

мультиполь

octopole         

общая лексика

восьмиполюсник

октупольный

Definitie

moment of truth
(moments of truth)
If you refer to a time or event as the moment of truth, you mean that it is an important time when you must make a decision quickly, and whatever you decide will have important consequences in the future.
Both men knew the moment of truth had arrived.
= crunch
N-COUNT

Wikipedia

Multipole expansion

A multipole expansion is a mathematical series representing a function that depends on angles—usually the two angles used in the spherical coordinate system (the polar and azimuthal angles) for three-dimensional Euclidean space, R 3 {\displaystyle \mathbb {R} ^{3}} . Similarly to Taylor series, multipole expansions are useful because oftentimes only the first few terms are needed to provide a good approximation of the original function. The function being expanded may be real- or complex-valued and is defined either on R 3 {\displaystyle \mathbb {R} ^{3}} , or less often on R n {\displaystyle \mathbb {R} ^{n}} for some other n {\displaystyle n} .

Multipole expansions are used frequently in the study of electromagnetic and gravitational fields, where the fields at distant points are given in terms of sources in a small region. The multipole expansion with angles is often combined with an expansion in radius. Such a combination gives an expansion describing a function throughout three-dimensional space.

The multipole expansion is expressed as a sum of terms with progressively finer angular features (moments). The first (the zeroth-order) term is called the monopole moment, the second (the first-order) term is called the dipole moment, the third (the second-order) the quadrupole moment, the fourth (third-order) term is called the octupole moment, and so on. Given the limitation of Greek numeral prefixes, terms of higher order are conventionally named by adding "-pole" to the number of poles—e.g., 32-pole (rarely dotriacontapole or triacontadipole) and 64-pole (rarely tetrahexacontapole or hexacontatetrapole). A multipole moment usually involves powers (or inverse powers) of the distance to the origin, as well as some angular dependence.

In principle, a multipole expansion provides an exact description of the potential, and generally converges under two conditions: (1) if the sources (e.g. charges) are localized close to the origin and the point at which the potential is observed is far from the origin; or (2) the reverse, i.e., if the sources are located far from the origin and the potential is observed close to the origin. In the first (more common) case, the coefficients of the series expansion are called exterior multipole moments or simply multipole moments whereas, in the second case, they are called interior multipole moments.

Vertaling van &#39multipole moment&#39 naar Russisch